Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation.

نویسندگان

  • Eirini P Papapetrou
  • Mark J Tomishima
  • Stuart M Chambers
  • Yvonne Mica
  • Evan Reed
  • Jayanthi Menon
  • Viviane Tabar
  • Qianxing Mo
  • Lorenz Studer
  • Michel Sadelain
چکیده

Human-induced pluripotent stem cells (hiPSCs) are generated from somatic cells by ectopic expression of the 4 reprogramming factors (RFs) Oct-4, Sox2, Klf4, and c-Myc. To better define the stoichiometric requirements and dynamic expression patterns required for successful hiPSC induction, we generated 4 bicistronic lentiviral vectors encoding the 4 RFs co-expressed with discernable fluorescent proteins. Using this system, we define the optimal stoichiometry of RF expression to be highly sensitive to Oct4 dosage, and we demonstrate the impact that variations in the relative ratios of RF expression exert on the efficiency of hiPSC induction. Monitoring of expression of each individual RF in single cells during the course of reprogramming revealed that vector silencing follows acquisition of pluripotent cell markers. Pronounced lentiviral vector silencing was a characteristic of successfully reprogrammed hiPSC clones, but lack of complete silencing did not hinder hiPSC induction, maintenance, or directed differentiation. The vector system described here presents a powerful tool for mechanistic studies of reprogramming and the optimization of hiPSC generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marro...

متن کامل

Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factor...

متن کامل

Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc

Poly(ADP-ribose) polymerase 1 (Parp1) catalyzes poly(ADP-ribosylation) (PARylation) and induces replication networks involved in multiple nuclear events. Using mass spectrometry and Western blotting, Parp1 and PARylation activity were intensively detected in induced pluripotent stem cells (iPSCs) and embryonic stem cells, but they were lower in mouse embryonic fibroblasts (MEFs) and differentia...

متن کامل

Generation of Col2a1-EGFP iPS Cells for Monitoring Chondrogenic Differentiation

Induced pluripotent stem cells (iPSC) are a promising cell source for cartilage regenerative medicine; however, the methods for chondrocyte induction from iPSC are currently developing and not yet sufficient for clinical application. Here, we report the establishment of a fluorescent indicator system for monitoring chondrogenic differentiation from iPSC to simplify screening for effective facto...

متن کامل

Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.

Transcription factor-based cellular reprogramming has opened the way to converting somatic cells to a pluripotent state, but has faced limitations resulting from the requirement for transcription factors and the relative inefficiency of the process. We show here that expression of the miR302/367 cluster rapidly and efficiently reprograms mouse and human somatic cells to an iPSC state without a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 31  شماره 

صفحات  -

تاریخ انتشار 2009